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ABSTRACT

This paper describes IBM's large vocabulary continuous
speech recognition (LVCSR) system used in the 1997 Hub4
English evaluation. It focusses on extensions and improve-
ments to the system used in the 1996 evaluation. The rec-
ognizer uses an additional 35 hours of training data over
the one used in the 1996 Hub4 evaluation [8]. It includes a
number of new features: optimal feature space for acoustic
modeling (in training and/or testing), �ller-word modeling,
Bayesian Information Criterion (BIC) based segmentation
and segment clustering, an improved implementation of it-
erative MLLR, variance adaptation, and 4-gram language
models. Results using the 1996 and 1997 DARPA Hub4
evaluation data sets are presented.

1. INTRODUCTION

Recently interest in large vocabulary continuous speech
recognition (LVCSR) research has shifted from read speech
data to speech data found in the real world - like broadcast
news (BN) over radio and TV and conversational speech
over the telephone. Considerable amount of both acoustic
(approximately 100 hours of which about 70% is usable) and
linguistic (approximately 400 million words) training data
for BN has been made by the Linguistic Data Consortium
(LDC) in the context of DARPA sponsored Hub4 evalua-
tions of LVCSR systems on BN [1]. As has been studied
and reported by several researchers [4, 8, 12, 11, 9, 10], BN
transcription poses several challenges to LVCSR systems.
The speech data exhibits a wide variety of speaking styles,
environmental and background noise conditions and chan-
nel conditions. A popular approach has been to classify the
BN data into a set of homogeneous conditions and to build
acoustic models (AMs) for each condition. Test data is then
segmented and classi�ed along conditions and an appropri-
ate acoustic model used for each condition. One particular
classi�cation scheme for BN news data that has been used in
the DARPA sponsored Hub4 BN evaluation in 1996 splits
the speech data along the so-called F-conditions [1]: pre-
pared speech (F0), spontaneous speech (F1), low �delity
speech, including telephone channel speech (F2), speech
in the presence of background music (F3), speech in the
presence of background noise (F4), speech from non-native
speakers (F5) and FX - all other speech. The 1996 Hub4
Unpartitioned Evaluation (UE) and Partitioned Evaluation
(PE) test data set forms a standard test set for evaluating
LVCSR systems. The only di�erence between the UE and
PE tests is that in the latter, the data is segmented and
classi�ed into F-conditions manually, while in the former
this has to be done automatically if necessary. A compari-
son gives information on how well automatic segmentation
schemes work for BN news transcription.
For the UE test, in the past we have used a two-stage

approach [4]. The speech data is �rst segmented into

high bandwidth speech (clean), low bandwidth speech (tele-
phone), and music. The music segments are removed and
the high and low bandwidth speech segments are then de-
coded using models trained (or adapted) on high and low
bandwidth speech respectively. This is because of the inad-
equacy of current segmentation algorithms to separate out
other F-conditions; it is relatively easy to detect music or
telephone channel speech.
For the PE test, in the past we have built condition spe-

ci�c models for each condition using MAP and MLLR. This
is because there is not su�cient training data to indepen-
dently build models for each F-condition; besides, it may
not be the best way to handle the problem.
Our current approach for both the UE and PE tests is to

use a single robust model built on all the available train-
ing data. Speaker/condition-adapted (SAT) training [6],
while appropriate for this purpose, is not used in the model
described in this paper. For both the PE and UE tests, iter-
ative MLLR is used to adapt the baseline robust model for
both the speaker and the F-condition. For the UE test, the
data is still, however, segmented into low-bandwidth and
high-bandwidth segments. The segments are then clustered
into homogeneous groups (the same speaker or environmen-
tal condition) before iterative MLLR is applied.
The 1997 DARPA Hub4 evaluation test was a UE test.

However, after the evaluation the distributed reference
scripts was used to also form a PE test. This paper re-
ports numbers on both these tests.
In the following sections we present algorithmic improve-

ments to the baseline model that were used in the 1997
Hub4 UE evaluation and the post-evaluation PE test (setup
as described above). The focus of our research e�ort has
been on improving baseline recognition accuracy for clean
speech (i.e., the F0 and F1 conditions). Nearly all of the
algorithm development work was evaluated only on these
two conditions.

2. OVERVIEW OF THE LVCSR SYSTEM

The IBM LVCSR system uses acoustic models for sub-
phonetic units with context-dependent tying (see [2, 3] for
details). Context dependent sub-phone class instances are
identi�ed by growing a decision tree from the available
training data [2] and specifying the terminal nodes of the
tree as the relevant instances of these classes. The acoustic
feature vectors that characterize the training data at the
leaves are modeled by a mixture of Gaussian pdf's, with di-
agonal covariance matrices. The HMM used to model each
leaf is a simple 1-state model, with a self-loop and a forward
transition.
The recognizer used in the 1996 evaluation had 5.7K

HMM states (or leaves) and 170K gaussians. The deci-
sion tree for the HMM states was built WSJ0+1 data. The
gaussian mixtures, however were trained on the approxi-
mately 35 hours of BN training data distributed by LDC



Acoustic Model F0 F1
AM-base 21.4 30.3
AM-0(4.0K) 21.3 29.7
AM-1(2.0K) 22.6 31.0
AM-2(3.5K) 21.1 29.1
AM-3(7.3K) 21.9 30.3

Table 1. Comparison of Decision Tree Sizes: AM-
base - trained on WSJ, AM-0 - trained on BN with
4K leaves, AM-1 trained on F0+F1 portion with
2K leaves, AM-2 same as AM-1 with 3.5K leaves,
AM-3 same as AM-2 with 7.3K leaves.

in 1996. For the PE test, the models were further adapted
to each focus condition and for the UE test to high/low
bandwidth speech using a combination of MAP and MLLR
[17, 16, 8] adaptation.
The recognizer used in this year's (1997) evaluation had

3.5K HMM states and 170K gaussians. The decision trees
were built exclusively on the F0 and F1 portions of the
complete 70 hours of BN training data. There was a single
robust acoustic model (AM-Evl97: built on all the data and
adapted in a supervised fashion to F0 and F1 data using
MLLR) used for baseline decoding which was followed by
iterative MLLR.

3. ACOUSTIC MODELING

We began our e�ort by �rst building a new baseline acoustic
model (AM-base) with 90K gaussians (the smaller size was
preferred to run experiments quickly) using all the 70 hours
of training data (including the 35 hours of additional data
distributed in 1997) by rebuilding gaussian mixtures for
the 5741 HMM states of our 1996 evaluation acoustic mod-
els. Initial experiments indicated that there was very little
(< :5%) in WER by using the extra 35 hours of data. Since
these HMM states in these models were constructed from
WSJ data we built two new decision trees for context clus-
tering, one based on just the clean (F0+F1) training data
and the other based on all the training data. Gaussian mix-
tures were then estimated using the EM algorithm and the
performance for various model sizes were evaluated. Exper-
imental results for the F0 and F1 focus conditions on the
1996 PE test are shown in Table 1. The language model
(LM) used in these experiments is LM-base (see below) and
there are about 90K gaussians in each of the acoustic mod-
els. Firstly, notice that building the decision tree with the
BN data improves error rate on both F0 and F1 (WER
with AM-base is worse than WER with AM-0 or AM-2).
The improvements are more on F1 (spontaneous speech)
because of the new realizations of context-dependent sub-
phonetic units vis �a vis WSJ training data. Secondly, not
using the training data for the other F-conditions in tree
building gives more gain (AM-0 vs. AM-2). This is prob-
ably because some of the HMM states are now modeling
realizations of phones in speci�c environmental conditions.
The best results were obtained with a system with about
3.5K HMM states (AM-2). These were the HMM states
used in AM-Evl97, the acoustic models used in the evalua-
tion.

3.1. Filler Models

The training data has been transcribed with breath and
�lled-pauses. This allows us to build models for �ller words.
Filler words are transcribed using our usual phone set of 51
phones in the dictionary. To the decision trees that take
sub-phonetic units to the HMM states, new states were
added for each occurrence of a phone within a particular
�ller word. The models for these states were initialized by
those of randomly chosen state from the same sub-phonetic

Acoustic Model F0 F1
AM-base 21.4 30.3
AM-4 21.0 29.0
AM-2 21.1 29.1
AM-5 21.0 28.9

Table 2. % word error rate with �ller word models:
AM-base and AM-2 do not use �ller models. AM-4
is AM-base with �ller models and AM-5 is AM-2
with �ller models.

unit. Standard Baum-Welch reestimation is then used to
estimate the models. Filler models seemed to improve the
performance on spontaneous speech without degrading the
performance on prepared speech when the base models was
AM-base. However, the gain was marginal when the base
model was AM-2. This is presumably because the MM
states in AM-base were built on WSJ data while the HMM
states in AM-2 were built on the BN training data (that
had 50% of F1 data - where �lled paused usually occur)
and hence some states were presumably already modeling
�ller words. Results are summarized in Table 2. The HMM
states in AM-Evl97 are the same as the ones in AM-2; �ller
models were not used in the 1997 Hub4 evaluation.

3.2. Optimal Features Spaces for Modeling

The next acoustic model improvement came from �nding
optimal features for modeling. The motivation is the fol-
lowing: the number of gaussians used in current LVCSR
systems forces us (from data insu�ciency, storage and com-
putational considerations) to typically use diagonal gauss-
ian models. Meanwhile, it is clear that with full-covariance
gaussian models, linear transformations of the feature space
do not lead to better models. Moreover, if the transforma-
tion is unimodular (or volume-preserving) the likelihood is
exactly the same in all transformed spaces. However, with
diagonal gaussian models one can ask the following ques-
tion: among all possible transformed feature spaces which
is the one where the diagonal assumption is \most valid".
What do we mean by \most valid"? If the transformation is
unimodular (required only to simplify the argument), then,
in each transformed space there is a loss in likelihood with
respect to full-covariance modeling (which is a constant).
One can therefore �nd a transformed space in which the
loss in likelihood is least (for details see [13, 22, 20, 14]).
One of us, R. Gopinath, was exposed to this idea based on
N. Kumar's Phd Thesis [18]. The viewpoint in that paper
was to �nd a generalization of LDA by allowing a more re-
alistic assumption on the covariances. Ignoring projections,
his work directly translates to the \best feature space for
diagonal modeling" described here. He suggests using a nu-
merical scheme for the obtaining the transformation. The
same idea was independently developed by M. Gales (one of
the authors!), while he was at Cambridge University under
the name \semi-tied covariances" [20, 14]. The viewpoint

there is to have covariances of the form ADjA
T (with Dj di-

agonal) for each of the gaussians motivated by the fact that
correlations can be better modeled this way. The matrix A
is typically shared by a collection of gaussians. Gales also
gives e�cient numerical algorithms to compute A. Semi-
tied covariances and �nding the best class-dependent fea-
ture space for modeling with diagonal gaussians are essen-
tially the same idea.
In summary, to better model the data with diagonal gaus-

sians, one can use a single global transformation of the fea-
ture space. Notice however, that the gaussians can be clus-
tered into groups and each group can be modeled in its own
feature space. Since there is more exibility in this case the
loss in likelihood is less. In the extreme case where each
gaussian has its own feature space transformation one can



Acoustic Model F0 F1
AM-2(baseline) 21.1 29.1
AM-6(1 transform) 19.3 28.4
AM-7(4 transforms) 19.4 29.0

Table 3. Optimal Feature Spaces for HMM state
clusters: a) AM-2 - baseline b) AM-6 - single trans-
form c) AM-7 - 4 transforms

choose the transformation to be projection onto the eigen-
basis of its covariance matrix and the likelihood of the data
is the same as full-covariance likelihood. However, from
computational and storage points of view this is exactly as
expensive as full-covariance modeling.
The optimal feature space idea was tried on our Hub4

recognizer which had 3.5K HMM states. For the purposes
of �nding the transformation, each state was modeled by a
single gaussian in IR60 obtained by double-rotation (a vari-
ant of LDA) of cepstral features derived from the speech
data [7]. The training data consisted of N � 24M labeled
samples. If (xi; li) is the labeled (at HMM state level) train-

ing data, i 2 f1; 2; : : : ;Ng ; xi 2 IRd; li 2 f1; 2; : : : ; Jg, and
cj 2 f1; 2; : : : ;Kg is the class cluster (or transformation
id) map, and �j is the covariance at state j (we are as-
suming a single gaussian at each state for simplicity), then
the likelihood of the training data with the single gaussian
assumption is given by the following expression [13]:

p
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Maximizing the above expression numerically gives the op-
timal choice of transforms Ak, k 2 f1; 2; : : : ;Kg. We exper-
imented with class clusters obtained by data-driven cluster-
ing of HMM states and by knowledge-based sharing (e.g.,
all HMM states of a phone share the same Ak).
In our experiments, after the transform is obtained this

way, using single-pass-retraining from a baseline system,
gaussian mixture models are built for each HMM state using
the new (state-dependent) feature space. Here we present
results when using one (AM-6) and four transformations
(AM-7) on the AM-2 baseline acoustic models (see Table 3).
For the latter case one transform each was used for all the
gaussians corresponding to a) stop-consonants and aps, b)
fricatives, c) vowels and dipthongs, and d) nasals, glides,
and silence respectively. Based on these results, and also
because iterative MLLR is greatly simpli�ed if there is only
a single transformation, AM-Evl97 used the feature space
transformation in AM-6.

3.3. More Mixture Components

The AM-6 models were further enhanced by increasing the
number of components to give about 170K gaussians using
standard clustering and EM resestimation in the optimal
feature space. The results using these models (AM-8) are
shown in Table 4. It turns out that combined scoring gives
better error rates than scoring each condition separately
due to some artifacts of the scoring process. Therefore, the
combined scoring numbers for AM-8 (AM-8 combined) are
also given in Table 4.

3.4. Supervised adaptation F0 and F1

All of the acoustic models above were built on training data
from all the F-conditions. Since we were especially inter-
ested in the performance of our LVCSR system on F0 and
F1 the model AM-8 was further adapted using the F0 and
F1 portion of the training data (about 60%) in a super-
vised fashion using MLLR. The performance of the baseline

Acoustic Model F0 F1
AM-6 19.3 28.4
AM-8 17.7 26.2
AM-8 (combined) 17.5 24.9

Table 4. Increased number of mixture components
for HMM states: a) AM-6 - 90K Gaussians b) AM-8
- 170K Gaussians

model (AM-8) and the adapted model (AM-9) are shown in
Table 5 for all the F-conditions. Notice that the F0, F1 and
FX error rates are better with supervised adaptation, while
F2 and F3 and F4 degrades somewhat. These experiments
used the LM used in the evaluation.

4. SEGMENTATION AND CLUSTERING

4.1. Segmentation

The segmentation algorithm evolved continually till the �-
nal evaluation. Consequently, the algorithm used in the
evaluation has some components that remained for histori-
cal reasons. Initially the plan was to use Gaussian mixture
models for low bandwidth speech, high bandwidth speech
and pure music to segment the data as we had done be-
fore [4]. The reason for separating telephone bandwidth
speech was to avoid mixing up high and low bandwidth
speech in unsupervised adaptation. Besides, to ensure that
the segment boundaries occur at silences, the test data is
also decoded with a small model set (we used AM-6). The
silence information from this decode pass is used to prevent
segment boundaries from splitting words. data is identical
(except for the side-information of the F-conditions in PE).
Therefore a comparison of UE and PE performance gives
and evaluation of the segmentation procedure. Experimen-
tal tests were conducted on the acoustic model AM-6 de-
scribed earlier and the results are shown in Table 6 The
segmentation procedure typically leads to an overall loss of
about 1% absolute in WER. The segments from the above
procedure typically contain data from both male and fe-
male speakers. This may be undesirable for both baseline
decoding and unsupervised adaptation. Gaussian mixture
gender models were built and added to the segmentation
process above. Just days before the evaluation, a speaker
change detection scheme was tried to see if speaker turns
can be detected. This was again motivated by potential im-
provements to unsupervised adaptation. The scheme uses
Bayesian Information Criterion (which is essentially a pe-
nalized ML scheme) to �nd penalized ML change points in
the speech signal. This scheme works very well in detecting
speaker, background, and channel changes. Therefore, in
principle, this scheme subsumes the gender detection, chan-
nel detection and music detection schemes described earlier
and moreover does not rely on building models of various
conditions. However, because there was not su�cient time
to study this scheme, it was used as a pre-processing step
in the �nal evaluation segmentation. The evaluation speech
data was split into \turns" using this turn detector and each
turn was then subsequently segmented further using tele-
phone/clean/music detectors and the gender detector. The
performance of this scheme on the 1996 evaluation data us-
ing the �nal baseline model AM-Evl97 is shown in Table 7.
Using the reference scripts for the 1997 evaluation which is
marked with speaker turns, a PE test was setup. This gives
us a comparison of the segmentation accuracy on the 1997
evaluation data (see Table 8). There was a bug in the si-
lence decode (part of the segmentation process) used in the
actual evaluation �xing which improves the baseline UE by
.5%.



Acoustic Model Total F0 F1 F2 F3 F4 F5 FX
AM-8 27.7 17.5 24.9 34.6 23.8 35.1 25.4 53.5
AM-Evl97 27.4 17.3 24.2 35.2 24.3 35.3 26.1 52.7

Table 5. Supervised adaptation on 1996 Evaluation data using MLLR (% WER): AM-8 - baseline, AM-Evl97
- adapted models.

Test Total F0 F1 F2 F3 F4 F5 FX
PE 28.2 18.6 25.1 34.8 24.7 34.8 29.1 54.2
UE 29.5 19.4 26.0 39.0 27.2 36.2 24.1 55.2

Table 6. Segmentation Accuracy on 1996 Evaluation data with AM-6 models: PE vs. UE (% WER).

Test Total F0 F1 F2 F3 F4 F5 FX
PE 27.4 17.3 24.2 35.2 24.3 35.3 26.1 52.7
UE 28.7 18.5 25.3 39.5 25.8 35.6 26.4 53.7

Table 7. Segmentation Accuracy on 1996 Evaluation data with AM-Evl97 models: PE vs. UE (% WER).

Test Total F0 F1 F2 F3 F4 F5 FX
PE 19.8 12.1 19.6 29.9 25.8 25.9 22.3 38.7
UE (Eval) 20.9 13.0 20.0 31.7 27.2 26.4 20.7 43.1
UE (Fixed) 20.4 12.4 19.9 30.5 26.9 26.0 21.8 43.5

Table 8. Segmentation Accuracy on 1997 Evaluation data with AM-Evl97 models: PE vs. UE (% WER).

Test Total F0 F1 F2 F3 F4 F5 FX
Baseline 20.9 13.0 20.0 31.7 27.2 26.4 20.7 43.1
MLLR+var 18.8 11.7 18.4 26.9 24.6 23.0 19.7 41.1
Iter. MLLR 18.0 11.2 17.9 25.3 24.3 22.4 19.1 39.3

Table 9. Unsupervised Adaptation on 1997 Evaluation data with AM-Evl97 models: Baseline vs. MLLR
with e�cient full-variance transformation vs. Iterative MLLR).

Test Total F0 F1 F2 F3 F4 F5 FX
Baseline 28.7 18.5 25.3 39.5 25.8 35.6 26.4 53.7
MLLR+var 26.6 17.7 24.3 33.0 21.8 34.1 25.8 48.5
Iter. MLLR 26.2 16.5 24.2 32.5 23.9 34.1 23.7 47.7

Table 10. Unsupervised Adaptation on 1996 Evaluation data with AM-Evl97 models: Baseline vs. MLLR
with e�cient full-variance transformation vs. Iterative MLLR).



Acoustic Model F0 F1
AM-6+true cluster 17.5 24.8
AM-6+auto cluster 17.5 24.6

Table 12. Manual vs Automatic Clustering Perfor-
mance

4.2. Unsupervised Adaptation on Test Data

Adaptation schemes like MLLR [16] adapt the means and
variances of the gaussian models using linear transforma-
tions. If there are too many adaptation parameters or too
little adaptation data, then, the adaptation tends to learn
the adaptation data transcriptions quickly. To alleviate this
problem we can decrease the number of adaptation parame-
ters or increase the amount of adaptation data. The former
is accomplished in the context of an iterative MLLR scheme
where there are 2i +1 transforms at the ith iteration for 2i

non-silence phonetic sub-units and one transformation all
the phonetic sub-units of silence. In the zeroth iteration
an e�cient full-variance linear transformation is estimated
[19]. The basic idea there is to �nd a matrix A in an ML
fashion on the test data such that the covariances are of the
form ADjA

T (Dj is the diagonal covariance obtained from
training). Subsequently, in each iteration only the means
are transformed. Increase in the amount of adaptation data
is accomplished by clustering together similar the segments
using a Bayesian Information Criterion (BIC) [15]. The
results of unsupervised adaptation on the 1996 and 1997
Evaluation test sets are shown in Tables 10 and 9 respec-
tively. In both cases the UE segments were clustered using
the Bayesian Information Criterion as described below.
The 1997 evaluation system submission had a bug in the

silence decode portion as described earlier. Unsupervised
adaptation on the 1997 evaluation data after �xing this bug
is shown in Table 11.

4.3. Clustering for Unsupervised Adaptation

The segments are clustered using a standard maximum-
linkage bottom-up-clustering procedure with a single gauss-
ian model for each segment and log-likelihood ratio distance
measure. The termination for this bottom-up-clustering
procedure was determined to maximize the BIC criterion
[15, 21]. BIC is a likelihood criterion penalized by the model
complexity (the number of parameters in the model). At
each stage in the bottom-up-clustering process the increase
in BIC value is computed and the process is terminated
when this increase is negative. It can be easily be shown
that the increase in BIC value by merging two clusters is
given by

�n log j�j+ n1 log j�1j+ n2 log j�2j+N(d+
d(d+ 1)

2
);

where n = n1 + n2 is sample size of the merged node, �
is the covariance matrix of the merged node and N is the
total number of samples from all the segments. This gives,
in principle, a threshold-free approach to clustering.
To study the e�ectiveness of clustering, the F0 and F1

segments of PE test were clustered by hand (28 clusters)
and by using the algorithm described above (31 clusters).
The word error rate (WER) after iterative MLLR adapta-
tion is nearly the same as seen in Table 12. In contrast
the result of clustering all the PE segments automatically
(79 clusters) is shown in Table 13 with single and multiple
iterations of MLLR. For comparison the baseline numbers
are also given.

5. LANGUAGE MODELING

The Language Model has a vocabulary of 65K most frequent
words from the BN language model corpus distributed by

Lang. Model F0 F1
LM-base 21.0 29.1
LM-base+4g 20.8 28.7
LM-base+4g+ac 20.7 28.6

Table 14. Mixture LM with 4-gram and acoustic
transcriptions

LDC in 1996. The baseline language model (LM-base) is
the one used in the 1996 evaluation [4]. With the same
training data a standard 4-gram deleted interpolation LM
was built (LM-4g). This component was added to LM-base
to create LM-base+4g. This LM was further mixed with a
small LM built from the 70 hours of acoustic training data
transcriptions (LM-base+4g+ac). Mixing the 4-gram LM
and the acoustic transcriptions LM to the baseline LM gives
minor improvements to the recognition performance as seen
in Table 14. The acoustic model used in these experiments
was AM-6. LM-base+4g+ac was the language model used
in the 1997 evaluation.

6. CONCLUSION

Transcription of broadcast news poses several challenges.
This paper presented IBM's LVCSR system used in the
1997 DARPA Hub4 evaluation. It systematically described
all the changes that were incorporated into the 1996 evalu-
ation system that lead to the system used the 1997 DARPA
evaluation. The system was speci�cally built for handling
baseline clean speech that is either read or conversational.
A simple linear transformation into an optimal feature space
for modeling is shown to lead to signi�cant improvements
in the baseline accuracy. New segmentation and clustering
algorithms are used which signi�cantly reduces the WER
di�erential between partitioned and unpartitioned evalua-
tions (currently about 1%). Unsupervised adaptation with
a new clustering scheme gives about 10% relative improve-
ment in accuracy. However, further improvements are re-
quired, especially, with regard to robustness to channel and
noise degradations.
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